Vol 9 No. 10 Oktober 2025 eISSN: 2246-6111

ANALISA TINGKAT KERUSAKAN JALAN SEBAGAI DASAR PENENTUAN JENIS PENANGANAN RUAS JALAN HITU-KAITETU MALUKU TENGAH

Rika Kapitanhitu

rika.kapitanhitu@gmail.com Politeknik Negeri Ambon

ABSTRAK

Jalan Raya adalah salah satu prasarana yang akan mempercepat pertumbuhan dan pengembangan sustu daerah serta akan membuka hubungan sosial, ekonomi dan budaya antar daerah. Pada Ruas Jalan Hitu-Kaitetu Desa Hila Maluku Tengah terdapat beberapa kerusakan jalan. Oleh karena itu diperlukan adanya program pemeliharaan. Metode yang digunakan untuk analisa pemeliharaan jalan, antara lain metode bina marga dan metode PCI (pavement condition index). Dengan menggunakan metode bina marga, menunjukan bahwa urutan prioritas adalah 10,364 (urutan prioritas > 7), yang dimana ruas jalan tersebut masuk dalam urutan prioritas kelas A. Oleh dari itu jenis pemeliharaan yang sesuai adalah pemeliharaan rutin. Dengan menggunakan metode pavement condition index (PCI), menunjukan bahwa nilai kondisi jalan pada ruas jalan hitu-kaitetu desa hila adalah 60,954 yang termasuk dalam klasifikasi kualitas perkerasan dengan tingkat bagus (good). Berdasarkan nilai PCI tersebut diatas, maka jenis pemeliharaan yang cocok adalah program pemeliharaan rutin.

Kata Kunci: Perkerasan Lentur, Bina Marga, Pavement Condition Index (Pci).

ABSTRACT

Higways are one of the infrastructures that Will accelerate the gwouth and development of an area because it provides access to open up social, economic and culture relations between regions. There are some road damage on the Hitu-Kaitetu Road Section. Hila Village, Central Maluku, Therefore itbis necessary to have a maintenance program. The methods used for the Analysis of road maitenance include the highways method and the PCI (pavement condition index) method. Using the highways method, ITS shows that the priority order is 10.364 (priority order > 7), which is where the road segment is included on the class A priority order. Therefore the appropriate type of maintenance is routine maintenance. By using the pavement condition index (PCI) method, it shows that the road condition value on the Hitu-Kaitetu Road section of Hila Village is 60.954 which is included inthe pavement quality alassification with a good level. Based on the PCI value mentioned above, the type of maintenance that is suitable is a routine maitenance program.

Keyworlds: Flexible Pavement, Constructions, Pavement Condition Index (Pci).

PENDAHULUAN

Ruas jalan Hitu-Kaitetu termasuk dalam jalan provinsi, kerusakan jalan yang terjadi pada Ruas Jalan Hitu-Kaitetu Desa Hila yaitu berupa retak kulit buaya (alligator cracking), amblas (depression), retak pinggir (edge cracking), retak memanjang/melintang (longitudinal transverse cracking), lubang (potholes), jembul (swelling). Kondisi kerusakan jalan tersebut tentunya juga akan mengganggu kenyamanan pengemudi kendaraan dan membahayakan pengguna jalan tersebut.

Agar jalan dapat tetap mengakomodasi kebutuhan pergerakan dengan tingkat layanan tertentu maka perlu dilakukan suatu usaha untuk menjaga kualitas layanan jalan, dimana salah

satu usaha tersebut adalah melakukan Analisa Tingkat Kerusakan Jalan Sebagai Dasar Penentuan Jenis Penanganan Ruas Jalan Hitu-Kaitetu Maluku Tengah terhadap kondisi permukaan jalan. Salah satu tahap dalam menganalisis kondisi kerusakan jalan adalah dengan melakukan penilaian terhadap kondisi jalan. Nilai kondisi jalan ini nantinya dijadikan acuan untuk menentukan jenis program evaluasi yang harus dilakukan, apakah itu program peningkatan, pemeliharaan berkala atau pemeliharaan rutin. Pemilihan bentuk pemeliharaan jalan yang tepat dilakukan dengan melakukan penilaian terhadap kondisi permukaan jalan didasarkan pada jenis kerusakan yang ditetapkan. Ada 2 metode pendekatan yang saya gunakan dalam melakukan penilaian kondisi jalan, dimana diantaranya adalah metode *PCI (Pavement Condition Inde ks)* dan metode Bina Marga.

2. TINJAUAN PUSTAKA

Metode Bina Marga

a. Penilaian Kondisi Perkerasan

Dalam melaksanakan penilaian kondisi perkerasan, maka pada tahap awal yang dilakukan adalah mengidentifikasi jenis kerusakan yang akan ditinjau dan juga besar atau luasan kerusakan yang terjadi Jenis kerusakan yang ditinjau berdasarkan metode bina marga adalah keretakan, alur, lubang dan tambalan, kekasaran permukaan dan amblas.

Tabel 1. Nilai K	ondisi Jalan
Penilaian Kondisi	
Angka.	Nilai
26-29	9
22-25	8
19-21	7
16-18	6
13-15	5
10-12	4 3 2
7-9	3
4-6	
0-3	1
Retak-retak	
Type	Angka
a.Tidak ada	1
b. Memanjang	2 3
c. Melintang	3
d. Acak	4
e. Buaya	5
Lebar	Angka
a.Tidak ada	0
b. < 1 mm	1
c. 1-2 mm	2
d. >2 mm	3
Jumlah Kerusakan	
Luas	Angka
a. 0	0
b. <10%	1
c. 10-30%	2
d. >30%	3

Sumber: Direktorat Jenderal Bina Marga, 1990

Alur	
Kedalaman	Angka
a.Tidak ada	0
b. 0-5 mm	1
c. 0-10mm	3

Tabel 1. lanjutan

d. 11-20mm	5
e. >20mm	7

Tambalan dan Lubang	
Luas	Angka
a. <10%	0
b. 10-20%	1
c. 20-30%	2
d. >30%	3

Kekasaran Permukaan	
	Angka
a. Close Texture	0
b. Fatty	1
c. Rough (Hungry)	2
d. Pelepasan Butir	3
e. Desintegration	4
A 1.1	

C. Desintegration	7
Amblas	
	Angka
a. Tidak ada	0
b. 0-2/100m	1
c. 2-5/100m	2
d. >5/100m	3

Sumber: Direktorat Jenderal Bina Marga, 1990

b. Urutan Prioritas

Setelah ditentukan nilai kondisi jalan, maka perlu diketahui urutan prioritas penanganan yang perlu untuk dilaksanakan. Dalam menentukan urutan prioritas diperlukan data kelas lalu lintas harian untuk pekerjaan pemeliharaan yang skalanya dapat dilihat pada tabel 2.2. Penilaian urutan prioritas penanganan terhadap kondisi jalan dapat dihitung dengan rumus:

 $Urutan\ prioritas = 17 - (Kelas\ LHR + Nilai\ Kondisi\ Jalan\ ...\ (2.1)$ Dimana:

Kelas LHR = Kelas lalu lintas (Tabel 2.2)

Nilai Kondisi Jalan = Nilai yang diberikan terhadap kondisi jalan (tabel.2.1)

Dari hasil perhitungan urutan prioritas diatas, maka dapat ditentukan skala pengambilan keputusan terhadap program pemeliharaan yaitu sebagai berikut :

- Urutan prioritas A (dengan nilai > 7)
 Jalan yang berada pada urutan prioritas ini dimasukkan dalam program pemeliharaan rutin.
- 2) Urutan prioritas B (dengan nilai 4 6) Jalan yang berada pada urutan prioritas ini dimasukkan dalam program pemeliharaan berkala.
- 3) Urutan prioritas C (dengan nilai 0-3)
 Jalan yang berada pada urutan prioritas ini dimasukkan dalam program peningkatan kondisi jalan.
- c. Lalu Lintas Harian Rerata (LHR)

data volume lalu lintas didapat dari survei langsung di lapangan yang dilakukan

selama 24 jam. Data lalu lintas kemudian dikonversi dengan menggunakan ekivalensi mobil penumpang (emp) ke satuan mobil penumpang (smp) kemudian dapat ditentukan kelas lalu lintas jalan.

Tabel 2. Nilai emp (ekivalensi mobil penumpang) kendaraan

Tipe Kendaraan	Nilai emp
endaraan ringan (LV)	1,0
Kendaraan berat (HV)	1,3
Sepeda motor (MC)	0,5

Sumber: Manual Kapasitas Jalan Indonesia 1997

Tabel 3. Kelas Lalu Lintas

I WOULD I ITEM	o Luiu Liiitus
Kelas Lalu Lintas	LHR
0	< 20
1	20-50
2	50-200
3	200-500
4	500-2000
5	2000-5000
6	5000-20000
7	20000-50000
8	>50000

Sumber: Direktorat Jenderal Bina Marga, 1990

Metode Pavement Condition Index (PCI)

Pavement Condition Index (PCI) adalah sistem penilaian kondisi perkerasan jalan berdasarkan jenis, tingkat dan luas kerusakan yang terjadi, dan dapat digunakan sebagai acuan dalam usaha pemeliharaan. Adapun penilaian kondisi kerusakan jalan dimulai dengan melakukan identifikasi terhadap jenis –jenis kerusakan yang akan ditinjau.

a. Penilaian Kondisi Perkerasan

Dalam melaksanakan penilaian kondisi perkerasan di lakukan dalam beberapa tahap pekerjaan. Tahap awal adalah dengan mengevaluasi jenis – jenis kerusakan yang terjadi sesuai dengan tingkat kerusakannya (severity level). Yaitu dengan cara mengukur panjang, luas dan kedalaman terhadap tiap – tiap kerusakan. Kemudian pada tahap berikutnya perlu dihitung nilai density, deduct value, total deduct value, corrected deduct value, sehingga kemudian akan didapat nilai PCI yang merupakan acuan dalam penilaian kondisi perkerasan jalan.

1. Kadar Kerusakan (Density)

Density atau kadar kerusakan adalah persentasi luasan dari suatu jenis kerusakan terhadap luasan suatu unit segmen yang diukur dalam meter persegi atau meter panjang. Nilai density suatu jenis kerusakan juga dibedakan berdasarkan tingkat kerusakan.

Rumus mencari nilai density:

• Untuk jenis kerusakan alligator cracking (retak kulit buaya), bleeding (kegemukan), block cracking (retak Kotak-kotak), corrugation (keriting), depression (amblas), patching and utility cut patching (tambalan), polished aggregate (pengausan agregat), railroad crossing (rusak perpotongan rel), rutting (alur), shoving (Singkut), slippage cracking (patah slip), swelling (Jembul), wheatering and ravelling (pelepasan Butir) adalah:

$$Density = \frac{Ad}{As} \times 100 \%$$

• Untuk jenis kerusakan bumps and sags (cekungan), edge cracking (retak Pinggir), joint reflection cracking (retak sambung), lane and shoulder drop off (pinggiran jalan turun vertikal), longitudinal and transverse cracking (retak memanjang/melintang) adalah:

$$Density = \frac{Ld}{As} \times 100 \%$$

Untuk enis kerusakan potholes (lubang) adalah $Density = \frac{N}{As} \times 100 \%$

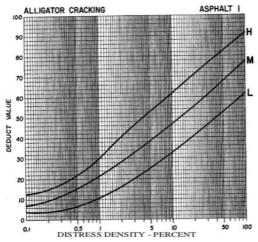
$$Density = \frac{N}{As} \times 100 \%$$

dimana

 A_d = luas total jenis kerusakan untuk tiap tingkat kerusakan (m²)

 $A_s = luas total unit segmen (m²)$

L_d = panjang total jenis kerusakan tiap tingkat kerusakan (m)


N = jumlah banyak lubang

2. Deduct Value (Nilai Pengurangan)

Deduct value adalah nilai pengurangan untuk tiap jenis kerusakan yang diperoleh dari kurva hubungan antara density dan deduct value. Deduct value juga dibedakan atas tingkat jenis kerusakan.

a. Retak Kulit Buaya (alligatorr Cracking)

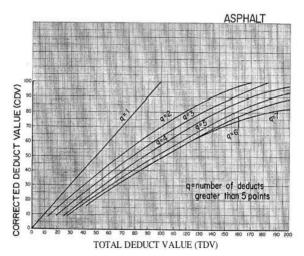
Adapun kurva hubungan antara density dan deduct value untuk jenis kerusakan alligator cracking dapat dilihat pada Gambar 2.10 dibawah ini. Sesuai dengan tingkatan kerusakannya, L (low severity level), M (medium severity level), dan H (high severity level)

Gambar 1 Kurva Deduct Value Untuk Alligator Cracking (Department of Defense, 2004)

Tabel 4. Tingkat Kerusakan Perkerasan Aspal Alligator Cracking

Tingkat	Identifikasi Kerusakan			
Kerusakan				
L	Halus, retak rambut/halus			
	memanjang sejajar satu dengan			
	yang lain, dengan atau tanpa			
	berhubungan satu sama lain.			
	Retakan tidak mengalami			
	gompal			
M	Retak kulit buaya ringan			
	terus berkembang kedalam pola			
	ataujaringan retakan yang diikuti			
	gompal ringan.			

Н	Jaringar	dan pola retak telah
	berlanjut,	sehingga
	pecahanpec	ahan dapat diketahui
	dengan mud	lah, terjadi gompal di
	pinggir.	Beberapa usaha
	mengalami	rocking akibat lalu
	lintas.	


Sumber: Hardiyatmo (2007)

3. Total Deduct Value (TDV)

Setelah didapat nilai *deduct value* dari tiap – tiap jenis kerusakan dan tingkat kerusakannya, maka akan didapatkan nilai total *deduct value* untuk tiap jenis kerusakan dan tingkat kerusakan pada suatu unit penelitian. Total deduct value ini didapatkan dengan menjumlahkan seluruh nilai dari *deduct value* tiap kerusakan jalan pada tiap segmen jalan.

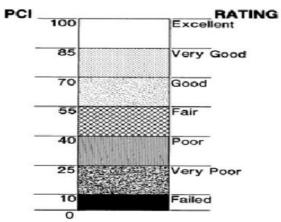
Corrected Deduct Value (CDV)

Corrected Deduct Value (CDV) diperoleh dari kurva hubungan antara nilai TDV dengan nilai CDV dengan pemilihan lengkung kurva sesuai dengan jumlah nilai individual deduct value yang mempunyai nilai lebih besar dari 5. Kurva hubungan antara nilai TDV dengan nilai CDV dapat dilihat pada gambar 2.17 dibawah ini.

Gambar 2 Kurva Hubungan Antara Nilai TDV dengan Nilai CDV (Department of Defense, 2004)

Jika nilai CDV diketahui, maka nilai PCI untuk tiap unit dapat diketahui dengan persamaan *Defense*.

$$PCI(s) = 100 - CDV$$


dengan:

PCI(s) = Pavement Condition Index untuk tiap CDV = Corrected Deduct Value untuk tiap unit

Untuk nilai PCI secara keseluruhan:

$$PCI = \frac{\sum PCI(s)}{N}$$

Kualitas Perkerasan dan Penentuan Jenis Pemeliharaan

Gambar 3 Klasifikasi Kualitas Kondisi Perkerasan Berdasarkan Nilai PCI (Department of Defense, 2004)

Dari hasil klasifikasi kualitas perkerasan jalan ini, maka dapat ditentukan urutan jenis pemeliharaan yang sesuai untuk di lakukan. Jika nilai PCI < 50 (untuk jalan primer), dan nilai PCI < 40 (untuk jalan sekunder), maka diusulkan jenis pemeliharaan mayor yaitu pemeliharaan terhadap keseluruhan unit jalan melalui overlay atau rekonstruksi terhadap jalan tersebut. Sedangkan jika nilai PCI > 50 bisa(untuk jalan primer, dan nilai PCI > 40 (untuk jalan sekunder) maka dapat dilakukan program pemeliharaan rutin sebagai usulan penanganannya.

METODOLOGI

Diagram alir penelitian

Gambar 4 Diagram Alir Penelitian

Lokasi Penelitian

Lokasi penelitian ini dilakukan pada ruas jalan Hitu-Kaitetu Desa Hila, Kecamatan Leihitu Kabupaten Maluku Tengah dengan panjang jalan 3 km dan lebar jalan 4,50 m.

Jenis Data

- 1. Data Primer
- Data panjang, lebar, kedalaman lubang pada tiap jenis kerusakan jalan.
- Data volume lalu lintas
- 2. Data Sekunder
- Peta lokasi
- Literatur yang digunakan
- 3. Teknik Literatur:

Yakni pendekatan kepustakaan yang dilakukan guna memperoleh informasi melalui buku-buku relevan.

HASIL DAN PEMBAHASAN

Data Lalu Lintas

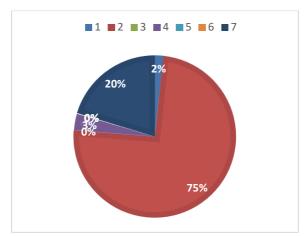
Data lalu lintas yang diambil adalah data volume lalu lintas selama 1 hari (24 jam), dengan interval waktu tiap 15 menit dilakukan pada jam sibuk yaitu dari jam 06.00-18.00. Data lalu lintas ini diambil dengan cara penghitungan langsung (survei lapangan). Adapun tujuan data volume lalu lintas ini adalah untuk menentukan kelas LHR jalan (tabel 4.1), sehingga dapat dicari urutan prioritas untuk menentukan jenis pemeliharaan jalan yang sesuai untuk ruas jalan tersebut. Dalam perhitungan volume lalu lintas, terdapat 4 tipe kendaraan yang akan di survei, antara lain:

- 1. Kendaraan ringan (LV): mobil pribadi, mikrobis, oplet, pick-up, truk kecil, Angkutan penumpang dengan jumlah penumpang Maksimum 10 orang termasuk pengemudi.
- 2. Kendaraan berat (HV): bus, truk 2 as, truk 3 as, dan truk kombinasi sesuai Sesuai sistem klasifikasi Bina marga, angkutan Penumpang dengan jumlah tempat duduk 20 buah Termasuk pengemudi.
- 3. Sepeda motor (MC): sepeda motor dan kendaraan beroda tiga sesuai Sistem klasifikasi Bina Marga.
 - 4. Kendaraan tak bermotor: sepeda, becak, kereta kuda, dan kereta dorong.

Tabel 6 Data Volume Lalu Lintas

Jenis	Nilai	Volume lalu	Volume
Kendaraan	emp	lintas	lalu lintas
	-		(smp)
Kendaraan	1,0	1078	1078
ringan (LV)		kendaraan	kendaraan
Kendaraan	1,3	53	68,9
berat (HV)		kendaraan	kendaraan
Sepeda	0,3	3976	1192,8
motor		kendaraan	kendaraan
(MC)			
Kendaraan	-	11	-
tak		kendaraan	
bermotor			
Total		5118	2339,8
		kendaraan	kendaraan

Dari hasil survei volume kendaraan selama 24 jam didapatkan volume lalu lintas yang melewati Ruas Jalan Hitu-Kaitetu Desa Hila adalah 2339,8 smp. Maka berdasarkan tabel 2.3 dapat ditentukan kelas lalu lintas untuk Ruas Jalan Hitu-Kaitetu Desa Hila adalah 5 (untuk LHR 2000-5000).


Data Luas Kerusakan Jalan

Tabel 5 Data Luas Kerusakan Jalan

-	i ubci c	Dut	u Luus	1101	abuit	411 0		
			Data Luas Kerusakan Jalan					
Segmen	Stationing	Alligator	Longitudinal and	Patching	Depression	Pothles	Sweel	Edge
Segmen	Stationing	Cracking	Transverse Cracking					Cracking
		(m²)	(m²)	(m²)	(m²)	(m²)	(m ²)	(m ²)
1	0+800 s/d 0+850					0,112		0,032
2	0+850 s/d 0+900				0,025	0,02		
3	0+900 s/d 0+950				0,012	0,039		
4	1+050 s/d 1+100		4,5		0,026			
5	1+100 s/d 1+150		3,4		0,028			
6	1+150 s/d 1+200		0,23		0,065	0,031		
7	1+200 s/d 1+250		57,5		0,042	0,05		
8	1+0250s/d 1+300		20					
9	1+300 s/d 1+350		55					
10	1+350 s/d 1+400							60,75
11	1+400 s/d 1+450		53,1					
12	1+450 s/d 0+500	5,16	33,44					
13	1+500 s/d 1+550			0,03	0,027	0,042		
14	1+550 s/d 1+600			0,052		0,06		
15	1+600 s/d 1+650				0,02	0,026		
16	1+750 s/d 1+800			0,031		0,034		
17	1+800 s/d 1+850				9,45			
18	1+850 s/d 1+900				0,2			
19	1+900 s/d 1+950					0,035		
20	1+950 s/d 2+000				0,01	0,069		
21	2+050 s/d 2+100						0,03	0,6
22	2+100 s/d 2+150							0,5
	Total	5,16	227,17	0,113	9,905	0,518	0,03	61,882

Sumber: Penulis 2022

Dari data luasan kerusakan jalan yang di dapat, maka di tentukan persentasi tiap jenis kerusakan dari yang terbesar sampai terkecil, yang digambarkan melalui diagram dibawah ini.

Gambar 5 Diagram Presentase penilaian Tiap Kerusakan Jalan

Berdasarkan diagram persentase diatas dapat dilihat jenis kerusakan jalan yang terjadi, mulai dari yang terbesar sampai yang terkecil, yaitu :

- Retak memanjang/ melintang (Long and trans cracking), dengan luas 227,17 m² (75 %).
- Retak Pinggir (Edge Cracking), dengan luas 61,882 m² (20 %)
- Amblas (Depression), dengan luas 9,905 m² (3 %)
- Retak Kulit Buaya (Alligator Cracking), dengan luas 5,16 m² (2 %)
- Lubang (*Pothles*), dengan luas 0,518 (0 %)
- Tambalan (*Patching*), dengan luas 0,113 (0 %)
- Jembul (swelling), dengan luas 0,03 (0 %)

Analisa Data dengan Metode Bina Marga

Penilaian Kondisi Jalan

Berdasarkan data yang diperoleh dari lapangan, selanjutnya dapat dilakukan penilaian kondisi jalan. Penilaian kondisi jalan ini dilakukan untuk tiap segmen yang panjang tiap segmen adalah 50 m. Adapun penilaian kondisi jalan dipengaruhi oleh keretakan, alur, lubang, tambalan, kekasaran permukaan, dan amblas. Selanjutnya ditentukan urutan prioritas penanganan yang diperlukan sehingga dapat diketahui jenis pemeliharaan yang diperlukan untuk Ruas Jalan Hitu-Kaitetu Desa Hila.

Segmen 1 (Stasioning 0+800 s/d 0+850)

Tabel 7 Penilaian Kondisi Jalan									
Jenis Kerusak an	Faktor Pengaruh	Ukura n							
			Kerusa kan						
Retak	Retak			1					
	Pinggir	>	3	,5					
	Lebar	2 mm	0						
	Luas	()						
	Retak	-	-	-					
	memanja								
	ng	-	-						
	Lebar	-	-						
	Luas								
Alur	Kedalam	-	-	-					
	an								

Tambala n dan	Luas	10%	<	0		0
Lubang						
Kekasar			-	-		-
an						
Permuka						
an						
Amblas	Kedalaan		-	-		-
Total Ang	ka Kerusakar	1			1,5	
	~ 1	_	_			

Total angka kerusakan untuk segmen 1 = 1,5, berdasarkan Tabel 2.1 segmen 1 memiliki angka kerusakan diantara 0-3. Maka didapat nilai kondisi jalan untuk segmen ini adalah 1.

Adapun nilai kondisi jalan dari segmen 1 sampai 22 dapat dilihat pada tabel 4.4 dibawah ini.

Tabel 8 Penilaian Kondisi Jalan Tiap Segmen

Segmen	Stationing		Total	Nilai
			Angka Kerusakan	Kondisi
1	0+800	s/d	1,5	1
	0+850			
2	0+850	s/d	1	1
	0+900			
3	0+900	s/d	5	2
	0+950			
4	1+050	s/d	5	2
	1+100			
5	1+100	s/d	5	2
	1+150			
6	1+150	s/d	4,67	2
	1+200			
7	1+200	s/d	5,67	2
	1+250			
8	1+250s/d		2,33	1
	1+300			
9	1+300	s/d	2,67	1
	1+350			
10	1+350	s/d	3	1
	1+400			
11	1+400	s/d	2,67	1
	1+450			
12	1+450	s/d	5,67	2
	0+500			
13	1+500	s/d	7	3
	1+550			
14	1+550	s/d	7	3
	1+600			
15	1+600	s/d	5	2
	1+650			
16	1+750	s/d	0	1
	1+800			
17	1+800	s/d	5	2
	1+850			

18	1+850	s/d	5	2
	1+900			
19	1+900	s/d	0	1
	1+950			
20	1+950	s/d	5	2
	2+000			
21	2+050	s/d	1,5	1
	2+100			
22	2+100	s/d	1,5	1
	2+150			
			Total	27

Dari perhitungan penilaian kondisi jalan didapat nilai kondisi jalan rata – rata adalah : $\frac{36}{22}$ = 1.636

Penentuan Urutan Prioritas

Penilaian urutan prioritas penanganan terhadap kondisi Ruas Jalan Hitu-Kaitetu Desa Hila dapat dihitung dengan rumus:

Urutan prioritas=17–(Kelas LHR+Nilai Kondisi Jalan)

Maka:

Urutan prioritas = 17 - (5 + 1,636)

= 10.364

Dari hasil perhitungan diatas, maka didapat urutan prioritas untuk Ruas Jalan Hitu-Kaitetu Desa Hila adalah 10,364. urutan prioritas >7 adalah urutan prioritas kelas A, dimana jalan yang berada pada urutan prioritas ini dimasukkan dalam program pemeliharaan rutin.

Analisa Data Dengan Metode Pavement Condition Index (PCI)

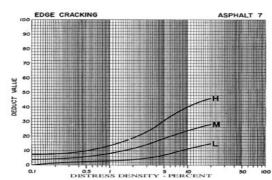
Penilaian Kondisi Jalan

a. Segmen 1 (Stasioning 0+800 s/d 0+850)

Jenis kerusakan yang terjadi pada segmen ini adalah:

1). Retak Pinggir

Panjang kerusakan = 0.7 m


Luas area = $212,5 \text{ m}^2$

Tingkat kerusakan (severity level) = Low(L)

Kadar kerusakan (density) = 0,329%

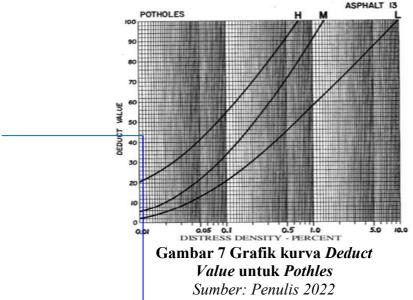
Nilai pengurangan ($deduct\ value$) = 2

Nilai pengurangan (deduct value) didapat dari grafik hubungan density dan deduct value dibawah ini

Gambar 6 Grafik kurva Deduct Value untuk Edge Cracking Sumber: Penulis 2022

2). Lubang

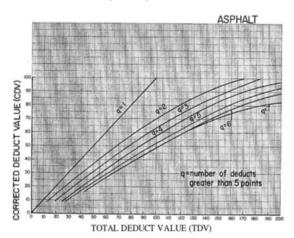
Jumlah Lubang = 1


Luas area = 212.5 m^2

Tingkat kerusakan (severity level) = Medium (M)

Kadar kerusakan (density) = 0,470%

Nilai pengurangan (deduct value) = 68


Nilai pengurangan (deduct value) didapat dari grafik hubungan density dan deduct value dibawah ini.

Total *Deduct Value* (TDV) = 2+68 = 70

Corrected Deduct Value (CDV) = 50

Nilai *corrected deduct value* (CDV) didapat dari grafik hubungan antara Total *Deduct Value* (TDV) dan *corrected deduct value* (CDV) dibawah ini.

Gambar 8 Grafik kurva hubungan antara nilai TDV dengan nilai CDV

Sumber: Penulis 2022

Sehingga nilai PCI untuk segmen 1 adalah :

PCI = 100 - CDV

PCI = 100 - 50 = 50

Adapun nilai *deduct value* jalan dari segmen 1 sampai segmen 22 dapat dilihat pada tabel 4.5. dibawah ini.

Tabel 9 Nilai *Deduct Value* Tiap Jenis Dan Tingkat Kerusakan

		Nikii Deduct Value Tiap Jenis Dan Tingkat Kerusakan																				
segmen	Stationing	R	etak kı	ılit		Retak		1	'ambal	an		Ambla	IS	Lubang			Jembul		1	Retak		
		Buaya		Memanjang												Pinggir						
			m^2			m²			m²			m²			m²			m²			m^2	
		L	M	Н	L	M	Н	L	M	Н	L	M	Н	L	M	Н	L	M	Н	L	M	Н
- 1	0+800 s/d 0+850														68					2		
2	0+850 s/d 0+900										4			62								
3	0+900 s/d 0+950										4				68							
4	1+050 s/d 1+100					14					4											
5	1+100 s/d 1+150					12					4											
6	1+150 s/d 1+200					0					4				69							
7	1+200 s/d 1+250					43					4				69							
8	1+0250s/d 1+300					30																
9	1+300 s/d 1+350					42																
10	1+350 s/d 1+400																				24	
- 11	1+400 s/d 1+450					42																
12	1+450 s/d 0+500	19				36																
13	1+500 s/d 1+550								3		4				69							
14	1+550 s/d 1+600								3			10			69							
15	1+600 s/d 1+650										4			43								
16	1+750 s/d 1+800									6					100							
17	1+800 s/d 1+850										9											
18	1+850 s/d 1+900										4											
19	1+900 s/d 1+950														100							
20	1+950 s/d 2+000										4				69							
21	2+050 s/d 2+100																	12			4	
22	2+100 s/d 2+150																				9	

Sumber: Penulis 2022

Tabel 10 Nilai PCI Tiap Segmen

	Tabel Iu I	MIIAI FCI	11ap Segm	en
Segmen	Stationing	Total Deduct Value (TDV)	Corrected Deduct Value (CDV)	Nilai PCI (100-CDV)
1	0+800 s/d 0+850	70	50	50
2	0+850 s/d 0+900	66	49	51
3	0+900 s/d 0+950	72	50	50
4	1+050 s/d 1+100	18	11	89
5	1+100 s/d 1+150	16	10	90
6	1+150 s/d 1+200	73	45	55
7	1+200 s/d 1+250	116	70	30
8	1+0250s/d 1+300	30	30	70
9	1+300 s/d 1+350	42	42	58
10	1+350 s/d 1+400	24	24	76
11	1+400 s/d 1+450	42	42	58
12	1+450 s/d 0+500	55	40	60
13	1+500 s/d 1+550	76	49	51
14	1+550 s/d 1+600	82	53	47
15	1+600 s/d 1+650	47	34	66
16	1+750 s/d	106	73	27

	1+800			
17	1+800 s/d 1+850	9	9	91
18	1+850 s/d 1+900	4	4	96
19	1+900 s/d 1+950	100	100	0
20	1+950 s/d 2+000	73	54	46
21	2+050 s/d 2+100	16	11	89
22	2+100 s/d 2+150	9	9	91
	Total Nila	ni PCI		1341

Dari tabel diatas dapat dilihat bahwa total nilai PCI adalah 2085, sehingga dapat dicari nilai PCI rata – rata untuk Ruas Jalan Hitu- Kaitetu Desa Hila Maluku Tengah adalah :

$$PCI_{rata-rata} = \frac{1341}{22} = 60,954$$

Klasifikasi Jenis Perkerasan dan Program Pemeliharaan

Dari hasil perhitungan diatas, maka didapat nilai PCI untuk Ruas Jalan Hitu- Kaitetu Desa Hila Maluku Tengah adalah 60,954. Dari hasil nilai PCI jalan ini, maka Ruas Jalan Hitu- Kaitetu Desa Hila Maluku Tengah termasuk dalam klasifikasi kualitas bagus (*Good*). Berdasarkan nilai PCI jalan tersebut dalam program pemeliharaan rutin.

KESIMPULAN

- 1. Hasil analisa kerusakan jalan didapatkan Ruas Jalan Hitu- Kaitetu Desa Hila Maluku Tengah dengan menggunakan metode Bina Marga diperoleh urutan prioritas = 10,364 (urutan prioritas > 7), dimasukkan kedalam urutan prioritas kelas A, dimana jalan ini dimasukkan kedalam program pemeliharaan rutin.
 - Hasil analisa data dengan menggunakan metode Pavement Condition Index (PCI) untuk Ruas Jalan Hitu-Kaitetu Desa Hila Maluku Tengah adalah 60,954. Dari hasil nilai PCI ini, maka Ruas Jalan Hitu-Kaitetu Desa Hila Maluku Tengah termasuk dalam klasifikasi bagus (good). Berdasarkan nilai PCI, maka jalan tersebut termasuk dalam program pemeliharaan rutin.
- 2. Dengan menggunakan metode Bina Marga, Penentuan jenis pemeliharaan terhadap kerusakan jalan ditentukan berdasarkan pada nilai urutan prioritas. sedangkan dengan menggunakan metode Pavement Condition Index (PCI), penentuan jenis pemeliharaan terhadap kerusakan jalan ditentukan berdasarkan pada nilai density, deduct value, total deduct value, corrected deduct valuedan kemudian didapatkan nilai PCI.

Saran

- 1. Agar kerusakan yang terjadi tidak menjadi lebih parah sehingga dapat mengganggu dan membahayakan pengguna jalan, maka perlu untuk segera dilakukan tindakan perbaikan.
- 2. Perlu segera dilakukan penanganan kerusakan jalan untuk memberikan rasa nyaman bagi pengendara jalan.

DAFTAR PUSTAKA

Department of Defense, 2004.

Direktorat Jenderal Bina Marga, Direktorat Bina Jalan Kota (Binkot) *Manual Kapasitas Jalan Indonesia 1990(Februari 1990*).

- Hardiyatmo, 2005 Jenis-jenis Kerusakan Perkerasan Lentur (Aspal), Gadjah Mada University Press, Yogyakarta.
- <u>https://leosentosa0.files.wordpress.com/2019/03/22-kerusakan-jalan.pdf</u> (di unduh 22 Maret 2019): Yanuar Sya'ban Harahap. *Analisa Tingkat Kerusakan Jalan Sebagai Dasar Penentuan Perbaikan (Jalan Lintas Sumatera) Kota Tebing Tinggi* (Study Kasus: Jalan Lintas Sumatera Kota Tebing Tinggi), 934–946.
- https://repository.upstegal.ac.id. Esa yanuar rizkiyana fitri (2020). Evaluasi

 Jalan Menurut Metode Bina Marga Dan Metode PCI (Pavement Condition Index)

 Serta Penanganannya (Study Kasus: Jalan KS Tubun, Kota Tegal).
- https://puterabangsa.wordpress.com/2020/01/18/skripsi-kerusakan-padaperkerasan-lentur-flexible-pavement/ (di unduh 18 Januari 2020) Rima Devira Azhari (2020) Analisa Kerusakan Lapis Perkerasan Lentur Jalan Menggunakan Metode Pavement Condition Index (PCI) (Study Kasus: Jalan Dusun Batu Alang, Sumbawa).
- Manual Pemeliharaan Jalan *Direktorat Jenderal Bina Marga No. 03/MN/B/ Departemen Pekerjaan Umum Jakarta*,1983.
- Tata Cara Penyusunan Program Pemeliharaan Jalan Kota, NO. 018/T/ BNKT/ 1990, Jakarta, *Direktorat Jenderal Bina Marga 1990*.
- www.google maps.com (status jalan), 2022